The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas.
نویسندگان
چکیده
PURPOSE High-grade glioma treatment includes ionizing radiation therapy. The high invasiveness of glioma cells precludes their eradication and is responsible for the dismal prognosis. Recently, we reported the down-regulation of MHC class I (MHC-I) products in invading tumor cells in human and mouse GL261 gliomas. Here, we tested the hypothesis that whole-brain radiotherapy (WBRT) up-regulates MHC-I expression on GL261 tumors and enhances the effectiveness of immunotherapy. EXPERIMENTAL DESIGN MHC-I molecule expression on GL261 cells was analyzed in vitro and in vivo by flow cytometry and immunohistochemistry, respectively. To test the response of established GL261 gliomas to treatment, mice with measurable (at CT imaging) brain tumors were randomly assigned to four groups receiving (a) no treatment, (b) WBRT in two fractions of 4 Gy, (c) vaccination with irradiated GL261 cells secreting granulocyte-macrophage colony-stimulating factor, or (d) WBRT and vaccination. Endpoints were tumor response and survival. RESULTS An ionizing radiation dose of 4 Gy maximally up-regulated MHC-I molecules on GL261 cells in vitro. In vivo, WBRT induced the expression of the beta2-microglobulin light chain subunit of the MHC class I complex on glioma cells invading normal brain and increased CD4+ and CD8+ T cell infiltration. However, the survival advantage obtained with WBRT or vaccination alone was minimal. In contrast, WBRT in combination with vaccination increased long-term survival to 40% to 80%, compared with 0% to 10% in the other groups (P < 0.002). Surviving animals showed antitumor immunity by rejecting challenge tumors. CONCLUSION Ionizing radiation can be successfully combined with peripheral vaccination for the treatment of established high-grade gliomas.
منابع مشابه
SURVIVAL IN PATIENTS WITH MALIGNANT GLIOMAS OF THE BRAIN
The present retrospective study was designed to analyze factors with prognostic values a) within, and b) significantly associated with, short-term (12months or less) and long-term (more than 24 months) survival times, i n 72 consecutive patients treated for malignant gliomas. Among 41 (57%) short-term surviving patients, the absence of both aphasia and motor deficit (as initial presenting ...
متن کاملRestoration of Immune Responsiveness to Glioma by Vaccination of Mice with Established Brain Gliomas with a Semi-Allogeneic Vaccine
Prior studies had shown the clinical efficacy of a semi-allogeneic glioma vaccine in mice with lethal GL261 gliomas. This was confirmed in the present study. As subcutaneous vaccination resulted in protection against tumor in the brain, the present study assessed the impact of this vaccination of mice bearing established GL261 brain gliomas on their cytokine production upon in vitro exposure to...
متن کاملEffective Treatment of Established GL261 Murine Gliomas through Picornavirus Vaccination-Enhanced Tumor Antigen-Specific CD8+ T Cell Responses
Glioblastoma (GBM) is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a n...
متن کاملSemapimod Sensitizes Glioblastoma Tumors to Ionizing Radiation by Targeting Microglia
Glioblastoma is the most malignant and lethal form of astrocytoma, with patients having a median survival time of approximately 15 months with current therapeutic modalities. It is therefore important to identify novel therapeutics. There is mounting evidence that microglia (specialized brain-resident macrophages) play a significant role in the development and progression of glioblastoma tumors...
متن کاملIonizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus.
Malignant gliomas remain incurable with current interventions. Encouraging investigational approaches include the use of genetically modified herpes simplex-1 (HSV-1) viruses as direct cytotoxic agents. Combining attenuated HSV-1 with standard therapy, human U-87 malignant glioma xenografts grown in the hind limb or intracranially in athymic nude mice were exposed to ionizing radiation, inocula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 12 15 شماره
صفحات -
تاریخ انتشار 2006